22 References

Burger, T. (2018). Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics. Journal of Proteome Research, 17(1), 12–22. https://doi.org/10.1021/acs.jproteome.7b00170
Chen, Y., Lun, A. A. T., & Smyth, G. K. (2016). From reads to genes to pathways: Differential expression analysis of RNA-seq experiments using rsubread and the edgeR quasi-likelihood pipeline. F1000Research, 5, 1438. https://doi.org/10.12688/f1000research.8987.2
Chen, Y., Lun, A. T., McCarthy, D. J., Ritchie, M. E., Phipson, B., Hu, Y., … Smyth, G. K. (2023). edgeR: Empirical analysis of digital gene expression data in r. https://doi.org/10.18129/B9.bioc.edgeR
Chicco, D., & Agapito, G. (2022). Nine quick tips for pathway enrichment analysis. PLOS Computational Biology, 18(8), e1010348. https://doi.org/10.1371/journal.pcbi.1010348
Den Boon, J. A., Pyeon, D., Wang, S. S., Horswill, M., Schiffman, M., Sherman, M., … Ahlquist, P. (2015). Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proceedings of the National Academy of Sciences, 112(25). https://doi.org/10.1073/pnas.1509322112
Dolgalev, I. (2022). Msigdbr: MSigDB gene sets for multiple organisms in a tidy data format. Retrieved from https://igordot.github.io/msigdbr/
Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., … D’Eustachio, P. (2022). The reactome pathway knowledgebase 2022. Nucleic Acids Research, 50(D1), D687–D692. https://doi.org/10.1093/nar/gkab1028
J. H., M. (n.d.). Handbook of biological statistics (3rd ed.). Baltimore, Maryland: Sparky House Publishing. Retrieved from https://www.biostathandbook.com/
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739–1740. https://doi.org/10.1093/bioinformatics/btr260
McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Research, 40(10), 4288–4297. https://doi.org/10.1093/nar/gks042
R Core Team. (2023). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Ripley, B. (2023). MASS: Support functions and datasets for venables and ripley’s MASS. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4/
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
Smith, L. I. (1987). A tutorial on Principal Components Analysis. New York: Wiley.
Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1–25. https://doi.org/10.2202/1544-6115.1027
Smyth, G., Hu, Y., Ritchie, M., Silver, J., Wettenhall, J., McCarthy, D., … Choi, D. (2023). Limma: Linear models for microarray data. https://doi.org/10.18129/B9.bioc.limma
Sohil, F., Sohali, M. U., & Shabbir, J. (2022). An introduction to statistical learning with applications in R (Vol. 6). Retrieved from https://www.tandfonline.com/doi/full/10.1080/24754269.2021.1980261
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., … Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data: Extending the Cox model. New York: Springer.
Therneau, T. M. (2023). Survival: Survival analysis. Retrieved from https://github.com/therneau/survival
Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L.-P., & Mi, H. (2022). PANTHER: Making genome-scale phylogenetics accessible to all. Protein Science : A Publication of the Protein Society, 31(1), 8. https://doi.org/10.1002/pro.4218
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth). New York: Springer. Retrieved from https://www.stats.ox.ac.uk/pub/MASS4/
Walck, C. (n.d.). Handbook on statistical distributions for experimentalists. Fysikum University of Stockholm, Stockholm: Particle Physics Group. Retrieved from https://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org
Wickham, H. (2023). Tidyverse: Easily install and load the tidyverse. Retrieved from https://tidyverse.tidyverse.org
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., … Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141
Yu, G. (2023). clusterProfiler: A universal enrichment tool for interpreting omics data. https://doi.org/10.18129/B9.bioc.clusterProfiler
Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An r package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118